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The evaporation and combustion of a single-component fuel droplet which is moving 
slowly in a hot oxidant atmosphere have been analysed using perturbation methods. 
Results for the flow field, temperature and species distributions in each phase, inter- 
facial heat and mass transfer, and the enhancement of the mass burning rate due to 
the presence of convection have all been developed correct to second order in the 
translational Reynolds number. This represents an advance over a previous study 
which analysed the problem to first order in the perturbation parameter. The primary 
motivation for the development of detailed analytical/numerical solutions correct to 
second order arises from the need for such a higher-order theory in order to investi- 
gate fuel droplet ignition and extinction characteristics in the presence of convective 
flow. Explanations for such a need, based on order of magnitude arguments, are 
included in this article. With a moving droplet, the shear at the interface causes 
circulatory motion inside the droplet. Owing to the large evaporation velocities at 
the droplet surface that usually accompany drop vaporization and burning, the entire 
flow field is not in the Stokes regime even for low translational Reynolds numbers. In 
view of this, the formulation for the continuous phase is developed by imposing slow 
translatory motion of the droplet as a perturbation to uniform radial flow associated 
with vigorous evaporation at the surface. Combustion is modelled by the inclusion of 
a fast chemical reaction in a thin reaction zone represented by the Burke-Schumann 
flame front. The complete solution for the problem correct to second order is obtained 
by simultaneously solving a coupled formulation for the dispersed and continuous 
phases. A noteworthy feature of the higher-order formulation is that both the flow 
field and transport equations require analysis by coupled singular perturbation pro- 
cedures. The higher-order theory shows that, for identical conditions, compared with 
the first-order theory both the flame and the front stagnation point are closer to the 
surface of the drop, the evaporation is more vigorous, the droplet lifetime is shorter, 
and the internal vortical motion is asymmetric about the drop equatorial plane. 
These features are significant for ignition/extinction analyses since the prediction of 
the location of the point of ignition/extinction will depend upon such details. This 
article is the first of a two-part study; in the second part, analytical expressions and 
results obtained here will be incorporated into a detailed investigation of fuel droplet 
ignition and extinction. In view of the general nature of the formulation considered 
here, results presented have wider applicability in the general areas of interfacial fluid 
mechanics and heat/material transport. They are particularly useful in microgravity 
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studies, in atmospheric sciences, in aerosol sciences, and in the prediction of material 
depletion from spherical particles. 

1. Introduction 
Rigorous analytical studies of fuel droplet evaporation, ignition, combustion and 

extinction in a convective flow are useful in developing models that may be used 
to predict and improve the performance of many combustion devices. Furthermore, 
studies of these phenomena at low droplet translational Reynolds numbers are 
of immediate application value in microgravity research (see Avedisian, Yang & 
Wang 1988; Jackson, Avedisian & Yang 1991; and Jackson & Avedisian 1994), in 
atmospheric and aerosol sciences (see Pruppacher & Klett 1980), and in studies of 
material depletion from spherical particles (Sadhal 1993). Although spray systems 
of combustion devices usually involve many drops of various sizes, it is now widely 
acknowledged (see, for example, Ayyaswamy 1995a, b)  that the isolated drop study 
still merits a great deal of attention. Some background to work accomplished on 
droplet evaporation, ignition, combustion and extinction can be found in the review 
articles by Williams (1973), Sirignano & Law (1978), Law (1982), Faeth (1983), 
Sirignano (1983), Chigier (1983), and Ayyaswamy (1995a,b). 

Sadhal & Ayyaswamy (1983) have examined the low Reynolds number translation 
of a drop in a gaseous medium with a strong radial field at the drop surface by 
using regular perturbation methods. It is noted that for liquid drops in a gaseous 
continuous phase, evaporation can generate a large radial velocity owing to the 
large density change accompanying phase change. Under these circumstances, even 
tiny drops (100 pm, radius) can experience inertial effects arising from the radial 
field, and the nonlinear inertial terms become important. Although a large uniform 
radial flow is an exact solution to the full Navier-Stokes equations, it cannot be 
superimposed on the Hadamard-Rybczynski flow even for a slowly translating drop 
because of the significance of the nonlinear inertial terms. On this basis, the solution 
for the continuous phase has been developed by considering uniform radial flow 
with the slow translatory motion introduced as a small perturbation. Closed-form 
analytical expressions for the flow fields in both phases are provided in Sadhal & 
Ayyaswamy (1983) by solving a coupled formulation. These flow field expressions 
have been employed by Gogos & Ayyaswamy (1988) and Gogos et al. (1986) 
in their investigations of the evaporation and combustion of a liquid droplet. In 
all of these analyses, solutions to flow and transport correct t o j r s t  order have been 
obtained. In the first-order formulation, while the determination of the flow fields may 
be accomplished by regular perturbation procedures, the evaluation of continuous- 
phase heat and mass transport requires analysis by a singular perturbation method. 
This is due to the existence of a region of non-uniformity in the neighbourhood 
of the point at infinity (see Acrivos & Taylor 1962) which necessitates invoking a 
singular perturbation procedure where the leading-order description for the far-field 
temperature and mass fraction includes the perturbed velocity field. For some related 
discussions, see Chung, Ayyaswamy & Sadhal (1984). 

It is now realized that higher-order theory and calculations for evaporation and 
combustion are needed for analytical/numerical investigations of droplet ignition and 
extinction phenomena in the presence of convective flow (Jog 1993). To appreciate this 
need, we first recall that the onset of droplet ignition is governed by two characteristic 
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time scales: the ‘diffusion time’ and the ‘chemical reaction time’. The ratio of these 
time scales is the Damkohler number 9. When $2 + 0, the reaction time is very long 
compared to the diffusion time, and the effects due to reaction may be neglected. 
This is the frozen limit. When 9 -+ 00, the reaction time is so short that the reaction 
may be assumed to take place instantaneously. This is the fast chemistry limit. 
Ignition and extinction phenomena are characterized by 9 - 0(1) and represent 
the transition between the frozen and the fast chemistry limits. Ignition may occur 
when the diffusion time is of the same order of magnitude as the reaction time. The 
presence of convective flow introduces competition between the characteristic time 
scales, varying the time scales along the periphery of the droplet. Thus, the location 
along the droplet surface where the ignition initiates is determined in part by the 
effects of convection. This location is important since it determines both the nature 
of the flame and the extent of burning. The presence of convection also affects 
the ignition delay time by influencing the rates of droplet heating and vaporization. 
Similar considerations apply for extinction. 

Ignition and extinction phenomena can be studied by allowing for finite-rate 
kinetics and resolving the flame structure. This may be analytically accomplished by 
the method of Activation Energy Asymptotics (AEA) (see, for examples, Liiian 1974; 
Buckmaster & Ludford 1982). AEA assumes that the chemical reaction rate has an 
Arrhenius temperature dependence with a large activation energy. The reaction term 
appearing in the non-dimensional governing equations for heat/species transport has 
the form ~ Y o Y F  exp(-O/T), where YO and YF are oxidant and fuel mass fractions, 
respectively. Here, T is the temperature made non-dimensional by Q/cp and 0 is the 
activation energy non-dimensionalized by QR/cp.  Q is the heat of combustion, R is the 
universal gas constant, and cp is the specific heat at constant pressure. A distinguished 
limit is taken in which the activation energy 0 and the Damkohler number 9 go 
to infinity (Janssen 1982). The Damkohler number is taken to be of the form 
9 = B exp( 0 / T,) where T, is the non-dimensional temperature that characterizes 
the magnitude of 9. 3 is allowed to vary at most algebraically in 0 (Buckmaster & 
Ludford 1982), and the reaction term becomes $Y0YF exp[O(l/T,- 1/57]. When the 
temperature is less than T,, the reaction term is exponentially small and the chemistry 
is essentially frozen. When the temperature is greater than T,, the exponential term 
cannot be balanced unless the product YOYF is zero. Therefore the chemistry is 
confined to a thin but finite reaction zone where T is close to T, and both YO and 
YF are non-zero. 

In order to implement AEA analysis for droplet ignition/extinction, three different 
regimes of interactions between fluid diffusion-convection and reaction chemistry 
have to be considered. These are (i) the partial burning regime in which either the 
oxidant or the fuel leaks through the flame to leading order, (ii) the Burke-Schumann 
regime in which YF and Yo are zero at the flame to leading order, and (iii) the 
frozen chemistry regime in which the chemical reaction is negligible to leading order. 
Extinction may occur in the partial burning or the Burke-Schumann regime, while 
ignition may occur in the frozen chemistry regime. For purposes of illustration, 
consider the partial burning regime. In this regime, either YF or Yo is non-zero to 
leading order at the flame. Therefore to keep the reaction term finite, temperature 
should be close to T, within O(T?/O). Let 6 denote T:/0.  To predict extinction, 
the structure of the flame must be examined. This can be carried out by stretching 
the reaction zone around the location of the flame, r = r f ( j i ) ,  before extinction 
occurs, and solving the energy and the species conservation equations in that region. 
Here, r is the radial coordinate, ji = cos8, and 8 is the azimuthal angle. The 
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temperature in the reaction zone may be perturbed as T = T, + 6Tr. To solve the 
governing equations for energy and species in the reaction zone to 0 ( 6 ) ,  we need 
matching conditions for temperature and species distributions. This necessitates the 
development of solutions of the temperature and species conservation equations to 
O(6) in the region between the drop and the flame, and in the region from the 
flame to the far field(r = 00). Typically, for a hydrocarbon fuel droplet, 6 is O( 
Since we are dealing with a moving drop, convective effects arising from droplet 
motion have to be simultaneously considered. The drop under study is translating 
at Reynolds number E - O(10-') with a strong radial field due to evaporation (the 
radial flow Reynolds number, Am - O(1)). An analysis of extinction (or for that 
matter, ignition) will therefore have two parameters E and 6, one reflecting convective 
flow effects and the other representing the effect of activation energy. In principle, 
therefore, in any perturbation study of extinction or ignition, the temperature and 
species variations should be expanded in terms of both E. and 6 in both the inner and 
the outer regions. Such expansions would provide the required matching conditions. 
In its most general form, this formulation is prohibitively difficult to solve in view of 
the many sets of coupled equations that have to be dealt with. However, analytically 
and numerically consistent solutions may be obtained by considering the limit S / E  4 1, 
or equivalently, for the parameters considered in fuel droplet combustion, 6 - O(e2). 
This choice satisfies two physical parametric requirements: E of O(10-') and 6 of 
O( The foregoing discussion clearly establishes the need for the calculation of 
the temperature and the species distribution to 0(f2)  to provide results that can be 
used for the solution of the extinction problem correct to O(6). It may also be noted 
that the flow field has to be determined to O(e2),  as well. Similar arguments will hold 
for the Burke-Schumann regime and the frozen chemistry regime. 

Our chief motivation for the present study has been to develop detailed mathemat- 
ical analyses and solutions correct to 0 ( e 2 )  which can later be included in theories to 
predict ignition and extinction characteristics. The inclusion of higher-order perturba- 
tions greatly increases the mathematical complexities. In particular, the determination 
of the flow field itself becomes a singular perturbation problem because, in obtain- 
ing the second-order solution for the flow field, inertial and viscous effects become 
comparable far away from the droplet. As a consequence, a regular perturbation 
scheme is no longer adequate to obtain uniformly valid solutions even for flow fields. 
The degree of difficulty introduced by this complicating feature is considerable. We 
have solved for the fluid flow inside and outside the liquid drop and the temperature 
and species distribution up to and including terms of O(e2).  In this treatment, while 
the flow fields in both phases and the transport in the gaseous phase are considered 
quasi-steady, the heat transport in the drop interior is treated as a transient process. 
This is because in the time scale of droplet heating all other processes may be regarded 
as quasi-steady (see Law & Sirignano 1977; Prakash & Sirignano 1980; Sundararajan 
& Ayyaswamy 1984). Evaporation is addressed first, and subsequently combustion 
is examined. Evaporation results will assist ignition studies while combustion results 
are useful for exploring extinction. Results obtained here compare very well with the 
numerical predictions of Aggarwal, Tong & Sirignano (1984). 

It may be noted that even with the formal solutions presented here, to carry out 
detailed ignition and extinction analyses of a moving liquid hydrocarbon droplet 
requires additional significant effort. A great deal of activation energy theory still 
has to be systematically set up (see, for examples, Buckmaster & Ludford 1983; 
Buckmaster 1985) incorporating the present results, and then the new formulation 
has to be solved. These undertakings will form part of a later study. 
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Liquid 

FIGURE 1. Problem schematic and coordinate system. 

2. Problem formulation: evaporating droplet 
Consider a single-component liquid droplet of initial radius & translating with 

velocity in an infinite expanse of a hot, insoluble gaseous oxidant. The flow field 
is considered to be axisymmetric. A spherical coordinate system is used to describe the 
problem and the origin of the coordinate system is at the centre of the drop as shown 
in figure 1. The drop is initially cold at a temperature TO. The ambient temperature 
T, and the oxidant mass fraction Yo,m are taken to be prescribed. We note that 
the droplet may experience non-uniform evaporation at the surface. However, any 
deviation from the spherical shape caused by the non-uniform surface evaporation 
will be instantaneously restored by the large surface tension. Small deviations from 
sphericity can take place due to other effects which are quantified by Weber, Eotvos, 
and capillary numbers. In this paper, the Weber number(plU;R/o), the Eotvos 
number (g(pc - pg)  R2/a), and the capillary number (ptU,/o) are taken to be very 
small, and as a result the droplet will remain spherical (Sadhal & Johnson 1986). 
Here CJ is the surface tension, pt is the liquid-phase viscosity, and pg and pt are 
the gas-phase and the liquid-phase densities, respectively. Furthermore, as shown 
in Sadhal & Ayyaswamy (1983), the rate of change of drop radius in a vaporizing 
situation is of order R = A o p g / p t .  The time scale governing substantial change in the 
drop size is therefore 

The time scale for diffusion is 
R2 

t, = -. 
v g  

In order that we may neglect the transient effects due to size changes on the overall 
process, t ,  << tR, or 
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For liquid-gas systems such as the one being studied here, the density ratio pe/pg - 
lo3. Therefore the transient effects due to size changes may also be neglected. 

Natural convection and thermodiffusion effects are considered to be negligible. In 
view of the small ratio of gas- to liquid-phase densities, gas-phase processes and the 
motion inside the drop are assumed to be quasi-steady (Sundararajan & Ayyaswamy 
1984). A single effective diffusion coefficient is used for all pairs of species. To 
accommodate the property variations, the so called 1/3 rule is employed. It is shown 
in Hubbard, Denny & Mills (1975) and is recommended by Abramzon & Sirignano 
(1989) that the most appropriate reference temperature for property evaluations is 
Tref = T, + ( T ,  - T,)/3, for evaporating droplets, where T, is the temperature at the 
droplet surface and T, is the ambient temperature. With these simplifications the 
governing equations for this system are 

The boundary conditions are 
uniform stream at infinity: 

Tg = T,, YF = O .  
finite velocity at the centre of the droplet: 

ueIr,o < a. (2.10) 

The interface conditions at r = R are 
continuity of tangential velocity: 

ug,e = uc,e = ue; (2.11) 

(2.12) 

continuity of mass flux: 

P g  (Ug,r - A) = P[ (ut,r - A) . 
The normal velocity at the droplet surface can be written as 

Ug,r Ir=R = A0 + 461, (2.13) 

where a(6) is the translation-induced velocity governed by the thermodynamics at the 
interface. 

We now develop a condition for the normal velocity in the liquid phase at the drop 
surface. The rate of mass depletion from the liquid drop is given by 

dm 
dt 
- = h = pe 471. R2R. (2.14) 
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The mass depletion rate can also be calculated from the evaporation velocity at the 
drop surface : 

(2.15) 

(2.16) 

The evaporation velocity at the drop surface can be substituted from equation 
(2.13) to give 

From equations (2.14) and (2.17), we have 

Equation (2.12) can be rearranged as 

Combining equations (2.18) and (2.19) and simplifying we get 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

For a typical liquid hydrocarbon droplet such as the one being considered in this 
study, Pg/Pe is O(10-3). The quantity a(0) is the normal component of the translation- 
induced gas velocity which is expected to be of the same order as the translation 
(O(e)) or smaller. Therefore, the magnitude of the radial component of the liquid 
velocity at the droplet surface, UfIr ,R ,  will be orders of magnitude smaller than the 
normal velocity in the continuous phase and therefore taken to be essentially zero. 
This approximation allows us to obtain closed-form analytical solutions for the flow 
field without much loss of accuracy. Thus, 

(2.21) 

Further boundary conditions are 
continuity of shear stress: 

normal stress balance: 

The equation for the normal stress balance has been written here for completeness 
but need not be considered any further in view of the large surface tension and the 
assumed spherical shape of the drop. 
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The final boundary conditions 
temperature continuity: 

the impermeability condition: 

interfacial heat balance: 

P. S. Ayyaswamy and I. M.  Cohen 

are 

(2.24) 

(2.25) 

(2.26) 

YF at the droplet surface is calculated using the Clausius-Clapeyron equation. 
In the above, u is the velocity, T denotes the temperature, p is the pressure, Y, 
denotes the fuel mass fraction, a is the thermal diffusivity, p is the density, k is 
thermal conductivity, p is the viscosity, D, is the mass diffusivity, CT is the surface 
tension, t is the time, R is the drop radius, and the subscripts g and / are used to 
denote the gas phase and the liquid phase, respectively. 

3. Solution for the flow field: gaseous phase 
In order to non-dimensionalize the governing equations it is appropriate to scale 

ug,o with Ao, and dg and u; with U,. Thus u ; , ~  = u,,o/Ao, uL* = u‘/U, ,  u;’ = u>/U,, 

p;* = p;/(U,pe/R) and V’ = RV. We define a non-dimensional velocity in the gas 
phase as u; = ugR/v,, and in the liquid phase as u> = ueR/v,. A perturbation scheme 
can now be introduced as u’ = u1+ E U ~  + . . . , p’ = P I +  ~ p 2  + . . ., where u’ and p’ are 
dimensionless variables with the asterisks dropped. Hence we have 

$ 8  - r* = r/R, E = U ~ R / V ,  = AoR/v, P;,O = Pg,o/(AOpg/R), P, - pi/(Umpg/R), 

Uniform evaporation at the droplet surface does not induce flow inside the droplet and 
ue,o = 0. We introduce stream functions yg and ye for the gas and liquid phases re- 
spectively. The continuity equations are identically satisfied by letting the velocities be 

1 a w g  

rsin9 ar ’ 
1 awt 

r2sm0 80 ’ 
1 awe 

rsin9 ar 
In view of equations (3.1) and (3.3) we may write 

Ug,@ = - - - 

Ue,r = v- 

U[,o = ---. 

w g  = AooYg,o + W g , l  + C2Yg,2  + . . * , 
~e = ~ / , i  + f2ye,2 + . . . . 

(3.6) 

(3.9) 
(3.10) 
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The normal velocity at the droplet surface is A0 + Al(8), where A l ( 0 )  is the 
translation-induced velocity governed by the thermodynamics at the interface. We 
expand Al(8) in terms of an infinite series of Legendre polynomials (P,). Hence, in 
non-dimensional form, the normal velocity at the interface is 

co 

n=l n= 1 

where, ji = cos8. We assume that the perturbed normal velocity at the interface 
has the same angular behaviour as the variable causing it, namely the translational 
field. Therefore, 

Ug,rIr=l = ~ 0 0  + e ( ~ o l +  ~ ~ 1 1 )  + c2 ( ~ 0 2  + ~ ~ 1 2  + :(3ji2 - 1 1 ~ 2 2 )  + . . . . 
3.1. Leading-order inner solutions 

In the inner region of the gaseous-phase flow, that is where r = 0(1), we may write 
the governing equation in terms of the stream function yg as 

where 

(3.11) 

(3.12) 

(3.13) 

In order to satisfy the velocity variation at the droplet interface and the uniform flow 
at infinity, the stream function is expanded in terms of Gegenbauer polynomials as 

Yg,rn(C ji) = c v;J~)c;;?(P). (3.14) 

Only the terms required to satisfy the boundary conditions are retained in this 
expansion. 

Using equations (3.9) and (3.1 l), the leading-order inner solution which satisfies 
the boundary condition at the droplet can be easily obtained as 

v g , o  = -p. (3.15) 

The expansion scheme (equation (3.1)) can be substituted into the momentum 
equation to compare the importance of inertia and viscous terms in the entire flow 
field. The solutions for stream functions (presented later in this paper) are used to 
estimate the large-r behaviour of the inertia and the viscous terms: 

co 

n=O 

inertia terms : ~ & u , , o  V U , ~  + A ~ C  (ug,o * V U , ~  + ug,l * V U , , ~ )  

+ f 2  (Aooug,o * vug,2 + Ug,l * VU,,l + A00ug,2 ' Vu,,o) 
a s r + c o  

-o($  : 0 ( 5 )  : o ( $ ) ;  

viscous terms : A ~ V ~ U , , ~  + E . V ~ U , , ~  + 62v2ug,2 
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-o($) : o ( ; )  : o(;). 

In obtaining the flow field solutions for the inner region, we have neglected the terms 
of order ( e2 / r3 )  while retaining the terms of order (l/r5). Clearly, this assumption will 
break down for r > l/e. Therefore, the inner solutions are not uniformly valid in the 
entire flow field. Thus a regular perturbation scheme will not be adequate to obtain 
uniformly valid solutions. A singular perturbation approach needs to be adopted and 
the governing equations have to be rescaled in the outer region (er > 1). 

Following Proudman & Pearson (1957) we define a strained coordinate for the 
outer region as p = er and the stream function as Yg = e2vs. In the outer region it 
is inappropriate to scale velocity by the evaporation velocity Ao. By scaling velocity 
in the outer region by V, and defining a non-dimensional velocity as U i  = VgR/vg  
we have, with the asterisks dropped, 

Vg = €Vg,o + €’Ug,, + * * . (3.16) 

and 

The governing equation for the outer region becomes 
Yg = ‘Yg,o + €2Yg,J + . . . . 

The leading-order outer solution is a uniform stream 

Yg,o = ip2( 1 - p2) .  

3.2. First-order inner solution 
To order the governing equation for vg,1 becomes 

The solution for vg,l is 

where 
Yg,l = -Aola + if(r)(l  - F 2 )  

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

f(r) = + C { [ ( &)4 + ( &)3] e-”m/idt} + Er4 + Fr2. (3.22) 

The coefficients E and F are obtained by matching this inner solution with the outer 
solution. Matching with (3.19) we obtain E = -C/(5A&) and F = 1 +C/(6A&). Thus 
we recover the solution for yg,l given by Sadhal & Ayyaswamy (1983) as 

-1 (L)4+l 6 (L)2}) AIm (1-$) /2 .  
5 Am 

(3.23) 
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3.3. Second-order inner solution 
Stream function yg,2 satisfies the equation 

145 

Let 

This gives 
yg,2 = -AO~P + ~ ; , ~ ( r ) ( l -  p 2 )  + w , ~ , ~ ( ~ ) P ( I  - p2) .  

The solution for ~ : , ~ ( r )  can be obtained as 

For large r, ~ ; , ~ ( r )  behaves as 

Stream function ~ , 2 , ~ ( r )  satisfies 

C f ( r )  ePAWlr 

Let x = r / A m  and 

Hence, 

Solutions for the homogeneous part of equation (3.31) are 

yl = (1 + 6x + 18x2 + 2 4 ~ ' )  eP1lX, 

y2 = 6x2 - 2 4 ~ ~ .  

To ensure proper behaviour as x -+ 00, the solution can also be constructed in powers 
of l /x  as (Sadhal 1993) 

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

Using the method of variation of parameters, the complete solution can be obtained 
as 

y(x) = dly3 - -CCAme-'lx 1 - - J' $dx+ - 'Y2 J '?$LdX,  (3.35) 
12 2Am 2Aoo 
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where fl(x) = f(x)-A&x2. The two linearly independent solutions for equation (3.30) 
are x3 and 1/x2. Using the method of variation of parameters the complete solution 
can be obtained as 

Y&(x) = d3x3 + x3 y( x)dx. (3.36) 

It can be shown that for large x, Y , ~ , ~ ( x )  behaves as 

In terms of r, 

(3.37) 

(3.38) 

where Q’ = JtAw y(<)/<*d<. Therefore, for large r ,  the behaviour of q g , 0  + e2yg,l + 
e 3 ~ g , 2  written in terms of the outer variable is 

3.4. First-order outer solution 
The governing equation for Yg,l is 

(1 - p 2 )  aDfYg,l a D f Y , ,  
P ail + p  ap = Dt Yg,l. 

(3.39) 

(3.40) 

The substitution D:Yg,l = exp(pp/2)@ gives 

(Df - i )  @ = 0 (3.41) 

- 
Here Qn(p)  = J’ P&) dp. The solution for Yg,l, such that Yg,0 + eYg,l matches with 
the inner solution (equation (3.39)), can be obtained as 

C 

6Aoo 
Yg,l = -Amp + -(I + p )  { 1 - exp [-;p(l- p)]} . (3.43) 

The matching procedure also suggests 
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4. Solution for the flow field: liquid phase 
The governing equation for can be written as 

147 

(4.1) 

where $ y  = vg/v/. 

4.1. First-order solution 
Using equation (3.10) we find that ve,l satisfies 

( 4 4  
4 D,ve,i = 0. 

In view of equations (2.11) and (2.22), we take yc,l = L'o(r)(l - p2) .  Therefore 

The solution for satisfying (2.10) is 

4.2. Second-order solution 
For consistency we take 

and the solution satisfying (2.10) is 

v(,2 = ~ ~ ( r ~  - r2)(1 - p 2 )  + ~ ~ ( r ~  - r3)p(1 - p 2 ) .  (4.8) 

The integration constants in the solutions for the flow field in the liquid phase 
and in the gaseous phase are obtained by satisfying the interface conditions. These 
integration constants are b (in equation (4.4)), B1 and B2 (in (4.8)), B and C (in 
(3.23)), C1 and C4 (in (3.27)), dl (in (3.35)) and d4 (in (3.36)). The expressions for b, 
B, and C can be found in Sadhal & Ayyaswamy (1983) and are not repeated here 
for brevity. With 4, = pg/pe, 

(i + 4,) [A12A& + $CA& + CAOIAW (e-Aw - l)] - $AolA&,+, 

-3 + (i + $,)A& + 3 [l + A m  - 54,A&,] e-Aw 
Y 
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dl = 
g ( k  + 3)!5!(-l)k 9 

k!3!(k + 5)! Amk 
k=O 

d,  = 9 -- 1 
g ( k  + 3)!5!(-l)k 

Amk k!3!(k + 5)! 
k=O 

A22 Q' 
d 4 = 7 + -  

2A, 5 A k '  

Here 

C 
12Am 

x<1+-  
c "  ( - A d n  

yp = izG c (n - 2)!(n + 2)(n  + 3) 
n=2 

where 

4C 31 1 
Am 20 30 

<I  = -4C ln(Am) - ~ + -CAW + -CA& + (24 - 3Am)(B + d2C) 

c "  (-Am)n 
52 = -6 c ( n  - 4)!n2(n + 1) 

n=4 

B+d2C ClnAm ( - A d n  
- ( Am + -) 30 n=6 ( n  - 6)!n(n - l ) (n  - 2) 

m m  ( -Am)m+n-l 

+ m=2 n=6 (m  + 2)!(m - l ) (m + 4)(m + n - l)(n - 6)!(n - l)(n - 2) 
m 

C "  ( - - A d n  - (-Am)"( 1 / n  - In Am) 

8 c (n - 5)!n2(n - 1) 
- _  

30(n - 6)!n(n - l)(n - 2)' 
n=6 n=5 

--y - ln(Am) + Ei(-Am) + - 
30 30 

and Ei(-x) is the exponential integral 

" e-t 
Ei( -x )  = -1 rd< 

The quantity y = 0.57721.. . is the Euler-Mascheroni constant. 

(4.9) 

5. Drag force calculations 
The drag force on the liquid drop consists of contributions from the viscous stresses, 

the pressure, and the momentum flux at the interface. The leading-order terms are 
given by Sadhal & Ayyaswamy (1983). We calculate the terms up to and including 
O(e) .  The drag force is non-dimensionalized by p g  U,R. 
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The non-dimensional viscous drag force is given by 

where 

The non-dimensional pressure drag is 

and the dimensionless momentum drag is 

6. Solution for the temperature field: gaseous phase 
The temperature is non-dimensionalized as Ti  = Tgcpg/AHc.  Defining 
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s c  (AooUgo + EUgl  + E 2 U g 2 )  * vg - v2g = 0, 

SC ( A w u , ~  + fugi + f2ug2) * V h  - V2h  = 0. 

In the outer region we have 
m 

n=O 

6.1. Leading-order outer solution 
Taking Fo(c)  = E the governing equation for Go becomes 

The solution can be obtained as (Gogos et al. 1986) 

8 

PSC 
Go = -- exp [-- :k p(  1 - F ) ]  

where 8 = gSWSc&,/(e-'m - 1) and = Am&. 

6.2. Leading-order inner solution 
A sufficiently general form is assumed for the inner expansion as 

n=O m=O 

Taking ~ o ( E )  = 1 the governing equation becomes 

m(m + 1) 
r2 

The solution which matches with the outer solution is 

gmo = 0. 

e-Amlr - 1 
goo = gsoo - e--Am - 1 ' 

6.3. First-order inner solution 

With f l ( e )  = E the solution for g,l is 

(6.10) 

where 

The expressions for SZ, Bll, B12, B21, and B22 can be found in Gogos et al. (1986). 



Evaporation and combustion of a fuel droplet 

6.4. First-order outer solution 
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The governing equation for G1 is obtained as 

(6.12) 

where 4 = pSc. Now letting Gl(4,p) = exp(iqp)G;(q,p) we get 

(V2 - 1)G' - sc2ac 1 [ (1 +Sc) + - 2 + w p ]  exp [-;I1 ( (SC + sc 1 - p) )] 
sc  q 4 1---- 

12Am v3 SC 4 
sc2ac 1 Sc2BA~ 1 (1 + f - p )  exp[-iqI + ~- (1 + f - p )  exp[-iql. 
12Am v3 2 v3 

(6.13) 

G; is expanded in terms of Legendre polynomials as 
M 

(6.14) 

Using 

the solution for equation (6.13) is obtained as 

(6.17) 

where 

and Kn+1/2(4/2), In+1/2(4/2) are modified Bessel functions. The quantity 6, denotes 
the Kronecker delta function. 
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As p + 0, Fn(pSc) behaves as 

Fn - a n ~ - ~ / ~ ~ n + 1 / 2 ( i ~ s c )  + rn(P) + o(1) (6.19) 

where 

9Am 

6 2  
+- +- 

16 

+- 
BCSC BC 

216Am 144Am’ 
r 2 = - - -  

o0(sc) = -;sc2 + ~ S C  + $(SC + 1I2(Sc - 2) In[(Sc + I)/SC] - + In sc . 
In view of the large-r behaviour of expressions (6.9), (6.10), and (6.11) we choose 

1/2 ~ 

, An = 0 for n 2 2. 

(6.20) 
Hence, as p --+ 0 

BAm BllJm BSCC 25 Y oo(Sc) + - - -)] Po(P) 
G I - - [ ~ - - - -  P 18Am 9Am 24 2 

(6.21) 

6.5. Second-order inner solution 
From the behaviour of the outer solution G1 as p --+ 0 which has terms like Inp, it is 
clear that f2(e) = e2 In E .  The governing equation to O(e2 In e)  is 

(6.22) 

In view of equation (6.19) the solution is 

g2. = C21. + C22.e -&/r. (6.23) 

Taking fs(e) = e2 and expanding gi in terms of Legendre polynomials as 

we get for m = 0 

where & is 

(6.24) 

(6.25) 
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The general solution is obtained as 

For m = 1 we have 

(6.28) 

g22 satisfies 

(6.30) 

(6.31) 

where 

(6.32) 
f ( r )  dgll - -- 49,22(r) dgoo +--I. gll df(r) 
3r2 dr r2 dr 6r2 dr 

The general solution for g22 is 

After lengthy manipulations, the large-r behaviour is obtained as 

(6.34) 

Jm BC 
(6.35) g12 N (Cii + C12 + a1)r - -(ScBll + cll + c12 + fill + - + . . . 

48Am 2 

+ (C21 + c 2 2  + a,) + * * . , (6.36) 
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(6.37) 

(6.38) 

The matching condition is 

1 2 

g,lP,(p) + c2 lneg2, + e2 E gn2Pn(p)] + lim [EGO + e2G1] . (6.40) 
P-0 

n=O 
r -+m 

Carrying out the matching up to and including 0(e2) we get the following conditions: 

(6.41) 
24 2 

BllJmSc I SCBC ( 
2 9Aoo 

COl + c02 = 

BSC 
c11+ c12 = - 4 - Q1, (6.42) 

hScC 
c21* + c22. = -- 

18Am' 
c21  + c 2 2  = -Q2. 

(6.43) 

(6.44) 

These matching conditions can be used with the boundary conditions to calculate the 
constants of integration Cij : 

1 
[Bil$Sc I SCBC ( oo(Sc) + - 25 - -) Y - Qo] , (6.45) 

24 2 
- gs02 COl = - 

c02 = - - + -  

c11 = 

c12 = ' (6.48) 

C21. = - 

e-Aw - 1 e-Am - 1 9Am 

(6.47) 

gs02 
e-Aw - 1 e--Aw - 1 

-gs12 + ($BSC - Ql) (1 - ;Jim) 

1 - - e-Jm (I + ;Jim) ' 

gSl2 - ($SC - ol) (1 + ;Jim) e-Am 

1 - ;Aoo - e-im (1 + iXm) 

(6.49) 
BScCe-'w 

18Am (e-Am - 1) ' 

(6.50) 
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(6.51) 

The expressions for the coupled variable h are identical to those for g and can 
be obtained by replacing the integration constants Cij by constants dij in equations 
(6.27), (6.30), and (6.33). 

The radial velocity at the droplet surface is related to the fuel mass fraction through 
the impermeability condition: 

(6.53) 
1 

s c  
Am = --In [l - h , d ,  

(6.54) 

(6.55) 

(6.56) 

A”00hs12 + A”llh81 + A”olh,ll 
SC(1 - hsm) 

d l l ( l+  A”w + iA”m2)e-A”0 + d12 
Sc( 1 - h a )  , (6.57) - A12 = 

A22 = 
&0hs22 + ~A”llhSl1 

Wl - 
-d21 (A”& + 6&,, + 18A”m + 24) e-2m + d22 (-6Aoo + 24) 

, (6.58) 

where A”11 = ScA11. The integration constants dij are obtained by replacing gsij with 
hsij in the expressions for Cij. 

The fuel mass fraction and the temperature at the drop surface can be expanded as 

(6.59) 

(6.60) 

A”&SC(l - hsW) 
+ 

Y F , ~  == hsoo + e(hs01 + P ~ I )  + f2(ko2 + Pk12 + i(3P2 - l)hs22) + * * . , 
2 

Ts = Ts00 + 4 T . l  + pTs11) + 6 (T5-02 + PTs12 + i(3P2 - 1)TS22) +. . . . 
Substituting these expressions into the Clausius-Clapeyron equation and expanding 

in e, with Tb denoting the boiling temperature, we get 
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TSOl 

ha1 = h m T x  (1 - 5 )  , 
T,, 
Ts11 

hsll = h s o o T X  (1 - 5 )  , 
TS, 

(6.62) 

(6.63) 

(6.65) 

(6.66) 

where 

and 

7. Solution for the temperature field: liquid phase 
The temperature inside the droplet is non-dimensionalized as T,' = Tec,,/AH, and 

time is normalized as to = a d t / g .  The governing equations are written in terms of 
the transformed variable gd : 

Similar to the expansion for the temperature in the gaseous phase, a perturbation 
scheme in terms of E. and Legendre polynomials is used: 

gt = gem + 6 k t 0 1  + Pl(ihl1) + e2 (ge02 + P1(F)ge12 + P2(P)ge22) + . . . * (7.2) 

This expansion along with equations (4.4) and (4.8) are substituted into equation (2.5). 
The resulting differential equations are solved numerically using a finite difference 
method. An implicit algorithm is used to solve for the transient temperature field 
inside the droplet. Calculations for the drop exterior are carried out simultaneously. 
At each time step, several iterations are required to obtain consistent convergent 
solutions. 

8. Physical quantities 
The mass burning rate at the droplet surface is given by 
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Non-dimensionalizing the mass burning rate by 47cR,ugAm gives 

157 

A01 2A02 2 h = l + e - + e  - + o ( e ) .  
Am Am 

The drop regression rate is given by 

The heat quantities are non-dimensionalized by 4x&k,AHc/c,. The dimensionless 
heat transfer from the gaseous phase to the droplet is 

The heat required for fuel evaporation is 

In the above, Ja= AHJL. The heat used for liquid heating is 

q 6  = q g  - q e .  (8.6) 

An equation for the velocity of the droplet can be obtained by setting the net force 
acting on the droplet (weight, drag, and buoyancy) equal to m dU,/dt: 

9. Formulation: burning droplet 
For the droplet burning situation, the governing equations are 

pgcPgu, * VT, - k,V2Tg = AH,o, 

pgug VYo - pgDgV2Yo = -WOVOCO, 

pgUg * VYF - PgDgv2yF = -WFVFCO, 

where o is the reaction rate for the reaction 

VFF + VOO + Products. (9.5) 

The temperature and the mass fractions are non-dimensionalized as follows : 
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7'; = Tgcpg/AHc, Yo' = WFYo/(v0Wo) and Y; = YF/vF.  Using equations (9.2), 
(9.3), and (9.4) and defining Shvab-Zeldovich variables as 
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T i  - Td;, + Yd - Y i ,  
and h = Y; - Yd + Y& = 

T,' - TA - Yo', 
the governing equations for the coupled variables g and h become identical to the 
governing equations for the evaporation problem (equations (6.2) and (6.3)) for unity 
Lewis number in the continuous phase. Thus the mathematical procedures developed 
earlier can be used to obtain solutions for the temperature field and species distribution 
for a translating burning droplet. (For details, see Jog 1993.) 

The non-dimensional variable gt for the temperature field inside the droplet is 
modified as 

T,' - Td;, - Yo, 
T,' - TA - Yom' g t  = (9.7) 

10. Results and discussion 
In this study, the combustion of a slowly moving liquid fuel droplet has been 

examined. The previous analyses (Gogos et al. 1986 and Sadhal & Ayyaswamy 1983) 
have been extended to include the effects of higher-order perturbations in the flow 
field as well as temperature and species transport. Inclusion of higher-order effects 
increases the mathematical complexities significantly as the evaluation of the flow field 
itself becomes a singular perturbation problem. Results are presented for quasi-steady 
combustion of a slowly moving droplet, and to make fruitful comparisons with the 
lower-order theory, calculations are made for n-heptane fuel in air as in Gogos et al. 
(1986). Detailed time histories of the burning drop and the drop hydrodynamics have 
been developed. The following property values are used in this study: cpg = 3.64 kJ 
kg-' K, p g  = 0.6 kg mP3, vg = 0.4 x10P4 m2 s-', k = 5.73 x ~ O - ~  W m-l K, P r  = 
1, Sc = 1, p t  = 650 kg m-3, ad = 0.72 x ~ O - ~  m2 sPf, +p = 0.1, 4 k  = k,/ke = 0.84, L 
= 317 kJ kg-l, T b  = 371.6 K, T, = 298 K, Yo, = 0.23, WF = 100.2, rW = 0.3, & = 

5.0 ~ l O - ~ m ,  V F  = 1, vo = 11, AH, = 45,000 kJ kg-'. 
Figure 2 shows the streamlines in the flow around the burning droplet for initial 

translational Reynolds number €0 = 0.2 at non-dimensional time t' = a d t / g  = 0.1. 
Results obtained by first-order theory are shown in the left half of the figure and 
the results of the higher-order theory are shown in the right half. Owing to the 
evaporation of fuel at the surface, streamlines originate at the droplet surface and 
follow the external flow. Near the front of the drop, the outward radial flow and the 
uniform external flow oppose each other forming a stagnation point as shown. For 
the parameters considered, the stagnation point is situated between the flame and the 
droplet surface. In the figure, streamlines a, b, c, d and a', b', c', d' are drawn for 
identical locations on the drop surface, e and e' denote the streamlines that originate 
from the stagnation point. The stream functions for g and g' are identical in value. 
The primes denote results from second-order theory. The stream function values are 
shown in the figure caption. By comparing the values for a, b, c, d and a', b', c', d', 
it is seen that a larger mass efflux or higher rate of vaporization is predicted by the 
second-order theory. For identical conditions, the results of the higher-order theory 
predict the location of the flame front and of the forward stagnation point to be 
about 15 % closer to the drop surface than those predicted by the first-order theory. 
The flame is noted to be asymmetric but with varying degree of asymmetry. The 
asymmetry itself is a direct consequence of convection. The streamline e is farther 
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FIGURE 2. Calculated flow streamlines at non-dimensional time t’ = 0.1. €0 = 0.2, TO = 320 IS. 
The vertical scale graduations show multiples of the droplet radius. Solid lines: streamlines, dashed 
lines: flame front. Left half: first-order theory, right half: second-order theory. Stream function 
values: a = -2.2600, b = -1.6074, c = -0.0150, d = 1.5050, e = 2.2600, g = 6.0, f - flame, and 
a’ = -2.4800, b’ = -1.7800, c’ = -0.0498, d’ = 1.6300, e’ = 2.4800, g’ = 6.0, f’ - flame. 

removed from the drop centre than Y’, although the stream function values are the 
same for these lines. These observations are explained as follows. The second-order 
theory predicts a relatively smaller total drag (see figure 5 )  and a relatively higher 
rate of vaporization (see figure 7) compared to the first-order theory. With a smaller 
drag, the instantaneous translational velocity is higher. Higher vaporization rate, on 
the other hand, is accompanied by a stronger radial field. Also, the translational 
Reynolds number is decreasing because of the change in the size of the drop. These 
are all competing mechanisms in the determination of the locations of the forward 
stagnation point and of the flame. For the parameters under consideration, the 
increased translational velocity has caused the forward stagnation point to be closer 
to the drop surface and an increased degree of asymmetry for the flame. 

The streamlines inside the droplet for two different non-dimensional times t‘ = 

0.01 and t* = 0.1 are shown in figures 3(a) and 3(b), respectively. In each figure, 
the left half is the result of the first-order theory and the right half corresponds 
to the second order, and the streamlines shown are for identical stream function 
values calculated from each theory. The shear force at the droplet surface introduces 
circulatory motion in the liquid phase. The lower-order theory predicts an internal 
spherical vortex symmetrical about the horizontal axis for all times. On the other 
hand, the higher-order theory reveals asymmetry in the internal circulation. At t’ = 
0.01, the deviation from symmetry is small. At a later time, t’ = 0.1, the internal 
vortex shifts more towards the front of the droplet with increased asymmetry. This 
behaviour is revealed by the inclusion of higher-order terms and can be explained as 
follows. The velocity field inside the droplet can be calculated from equations (4.4) 
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FIGURE 3. Streamlines inside the droplet at (a) t' = 0.01 and (b)  t' = 0.1. €0 = 0.2, 
To = 320K. Left half: lower-order theory, right half: higher-order theory. Stream function values: 
a = a' = 0.2155 x lop3, b = b' = 0.7437 x lop3, c = d = 1.3090 x lop3, d = d' = 1.7264 x 

_ - -  _ _ _ - - - -  _ _ _ - - -  
- - - - _ _ _ _  _ _ _ _ _ - - - - - -  FT 

l . O  1 

0.5 1 .o 1.5 2.0 2.5 3.0 
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FIGURE 4. Variation of non-dimensional drag force with Am. €0 = 0.2. Solid lines: solutions 
up to O(E'), dashed lines: solutions up to O(E). 

and (4.8) as 

ue,, = 2 4  + E B ~ ) ( ~ ~  - 1 ) p  + 6 2 ~ 2 ( r 3  - r ) (3p2  - 11, 

u8,O = --€(A + e ~ ~ ) ( 4 r ~  - 2)(1- ,ii2)1/2 - e2B2(5r3 - 3r)p(1- p2)1/2. 

Clearly, the first terms in the above equations give rise to a velocity field symmetric 
about the equatorial plane corresponding to the Hill's spherical vortex. The second 
terms in the above equations introduce asymmetry in the velocity field. The value of 
the constant B2 increases as the non-uniformity of the radial evaporation increases 
with time and this causes the shift of the internal vortex. As the radial evaporation 
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FIGURE 5. Variation of non-dimensional drag force with time. €0 = 0.2 and TO = 320 K. 
Solid lines: solutions up to O(c2),  dashed lines: solutions up to O(e). 

velocity increases, the strength of this circulatory vortex decreases. This is due to the 
convection of vorticity away from the drop surface. 

Figure 4 shows the variation of each component of the drag force with radial 
Reynolds number, Am. The solid lines show the results of the higher-order theory 
and the dashed lines correspond to first order. As the droplet moves and burns 
in the atmosphere, its temperature and the normal component of the velocity at 
the surface Ao, both increase. With increasing Am, the total drag force decreases 
until a minimum is reached, and increases thereafter. The normal component of 
the interfacial velocity ( u ~ , ~ ( ~ = ~ )  is maximum at the front and decreases towards the 
rear. The recoil effect of the flux leaving the droplet produces momentum drag. With 
increasing vaporization rate, the contribution of the momentum drag term becomes 
increasingly important. With increased evaporation, the pressure drag decreases due 
to the reduction in pressure drop from the front towards the rear stagnation point. 
For large enough Aw, the pressure at the rear may in fact be higher than that at 
the front giving rise to a negative pressure drag. The viscous drag also decreases 
with increasing Am because of the blowing effect. A combination of all of the 
above effects results first in a reduction and then in an increase in total drag with 
increasing Am. 

Figure 5 shows the temporal variation of the non-dimensional drag forces acting on 
the fuel droplet. The radial Reynolds number, Am, increases with increasing t*. For 
the range of t*  covered in figure 5, Am would vary from 0.8 to about 2.3 (based on our 
numerical calculations). With increasing time, u ~ , ~  I r = R  also increases. There is pressure 
recovery at the rear of the drop and consequently the pressure drag decreases with 
increasing t*. The viscous drag also decreases owing to the increased blowing effect. 
The momentum transfer from the drop surface to the far stream is increased owing 
to the increased vaporization causing the thrust drag to increase. The combined effect 
is an essentially monotonic increase in the total drag force with time. A comparison 
with the first-order theory shows that the lower-order theory overpredicts the drag 
force on the droplet. 
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FIGURE 6. Variation of interfacial heat transport: qg denotes heat transported towards the drop 
from the gaseous phase, q d  denotes heat conducted into the interior of the drop, qe denotes heat 
required for evaporation. €0 = 0.2, TO = 320 K. Solid lines: solutions up to O(E'), dashed lines: 
solutions up to O(E) .  

Figure 6 shows the temporal variation of the interfacial heat transport for a droplet 
introduced at TO = 320 K. The dashed lines show the results obtained from the 
first-order theory. Since the initial temperature of this droplet is less than the wet 
bulb temperature ( Twb = 359.2 K), a substantial portion of the energy received from 
the gaseous phase is used for liquid heating for about a third of the droplet lifetime. 
The dimensionless droplet lifetime predicted from higher-order theory is t' = 0.36 and 
is t' NN 0.4 from first-order theory. It may be noted that the total droplet lifetime may 
be inferred from the figure as corresponding to the dimensionless time when the heat 
fluxes are zero. As the temperature of the droplet increases, the heat transport from 
the gaseous phase decreases whereas the evaporation velocity and the heat required 
for evaporation both increase. As expected, the results are qualitatively similar to 
those obtained from the first-order analysis. However, for identical conditions, the 
first-order analysis predicts the droplet lifetime to be about 12% longer than the 
higher-order analysis. 

Recall that the variation of droplet diameter for combustion of a stationary fuel 
droplet is described by the well known d2-law which predicts a linear variation 
of the square of the droplet diameter with time. Figure 7 shows the variation 
of the non-dimensional diameter squared with non-dimensional time for a droplet 
introduced at an initial temperature of 320 K, moving with an initial translatory 
Reynolds number of c0 = 0.2, and at non-dimensional time t' = met/%. During 
the initial transient period, the droplet heat-up leads to a lower rate of evaporation 
and this is evidenced by a lower slope of the d2 curve. At later times, the droplet 
temperature increases and this results in a higher evaporation rate as shown by 
the increased slope. The second-order theory predicts a higher evaporation rate 
and a shorter droplet lifetime. By comparison with results for spherico-symmetric 
vaporization under identical conditions, translation is seen to shorten the droplet 
life time. 
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FIGURE 7. Variation of the square of the droplet diameter with time. TO = 320 K. Solid line: 
higher-order theory with €0 = 0.2, dashed line: lower-order theory with €0 = 0.2, and dashed-dotted 
line: E = 0, stationary droplet. 

11. Conclusions 
The evaporation/combustion of a slowly moving droplet has been analysed by 

coupled singular perturbation procedures. Results for the internal and external flow 
fields, drag coefficients, heat and species transport, and droplet lifetime have been 
developed correct to second order in the perturbation parameter. The chief mo- 
tivation for the present study has been to develop elaborate mathematical details 
and results which can be directly incorporated in studies of ignition and extinction 
of a moving fuel droplet. Illustrative calculations have been provided for the va- 
porization and burning of an n-heptane droplet. Comparison of the results with 
those obtained by a first-order theory show that, for identical conditions, the higher- 
order theory predicts increased interfacial heat and mass transport and a smaller 
total drag force. Most significantly, the new theory shows that the flame stand-off 
distance is reduced, there is greater asymmetry in the flame structure, the forward 
stagnation point is closer, and the internal flow field is asymmetric. The droplet 
lifetime is predicted to be shorter. These features will have a significant impact on 
ignition/extinction studies since the location of the point of ignition/extinction will 
depend on them. 

In a study of ignition, the temperature profiles obtained here for a vaporizing 
droplet will be valid in the entire flow field up to O(e)  as the nonlinear chemical 
reaction effects will be present only to O(e2). The temperature profiles in the reaction 
zone can therefore be perturbed by O(r2)  from the frozen solutions. The governing 
equations for the perturbed temperature may then be solved, and ignition criteria may 
be obtained by appropriately matching the solutions with those obtained in this study 
correct to O(e2). A large change in the perturbed temperature for a small change in 
the Damkohler number would indicate the onset of ignition. By similar arguments, 
the results developed here for droplet combustion are useful for the determination of 
extinction characteristics. The structure of the flame zone can be studied by stretching 
the reaction zone around the flame front. The governing equations may be solved in 
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the reaction zone. Extinction criteria may be obtained by matching the temperature 
and the mass fraction variations in the reaction zone to the variations obtained in this 
paper for the inner and outer regions. The leakage of one of the reactants may be 
present in the higher-order solutions. In that circumstance, evaluation of the reactant 
leakage for different ambient conditions would predict droplet extinction. 

It may be noted that the results presented here are of much wider applicability 
than for ignition/extinction studies. For example, diverse fields such as microgravity 
studies, atmospheric and aerosol sciences, and studies of material depletion from 
spherical particles would all benefit from the analysis presented here. 

The authors are very grateful to Mr Srinivas Sripada, a doctoral student in the 
Department of Mechanical Engineering and Applied Mechanics at the University of 
Pennsylvania, for many helpful discussions. 
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